1,374 research outputs found

    Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species?

    Get PDF
    © 2017 Hageer et al. Background. Shrubs play a key role in biogeochemical cycles, prevent soil and water erosion, provide forage for livestock, and are a source of food, wood and non-wood products. However, despite their ecological and societal importance, the influence of different environmental variables on shrub distributions remains unclear.Weevaluated the influence of climate and soil characteristics, and whether including soil variables improved the performance of a species distribution model (SDM), Maxent. Methods. This study assessed variation in predictions of environmental suitability for 29 Australian shrub species (representing dominant members of six shrubland classes) due to the use of alternative sets of predictor variables. Models were calibrated with (1) climate variables only, (2) climate and soil variables, and (3) soil variables only. Results. The predictive power of SDMs differed substantially across species, but generally models calibrated with both climate and soil data performed better than those calibrated only with climate variables. Models calibrated solely with soil variables were the least accurate. We found regional differences in potential shrub species richness across Australia due to the use of different sets of variables. Conclusions. Our study provides evidence that predicted patterns of species richness may be sensitive to the choice of predictor set when multiple, plausible alternatives exist, and demonstrates the importance of considering soil properties when modeling availability of habitat for plants

    Biohydrogen production from diary processing wastewater by anaerobic biofilm reactors

    Get PDF
    Fermentative hydrogen production was studied in packed bed batch reactors to assess the influence of environmental factors over yield hydrogen production from dairy wastewater. Dried stems of Opuntia imbricata were used as substratum adding a pretreated mixed culture for biofilm formation. Experimental results showed that, yield hydrogen production was significantly affected by initial COD concentration, temperature and dairy wastewater pH. Maximum yield obtained was 12.73 mM H2/g CODc when initial COD concentration was 21.1 g COD, dairy wastewater pH with no adjustment (11.32) and room temperature of 16 ± 3°C. Methane production was completely inhibit at an initial pH of 4 at all temperature studied (final pH 4.06), meanwhile, with an initial pH of 11.32, with exception for 16°C, methanogenic activity was not completely inhibit when final pH was over 5, showing an increase in methane production of 0.35 to 0.75 g CH4/l for 35 to 55°C.Key words: Biofilm, dairy wastewater, hydrogen, Opuntia imbricat

    Study of Beauveria bassiana growth, blastospore yield, desiccation-tolerance, viability and toxic activity using different liquid media

    Get PDF
    Beauveria bassiana was grown on three liquid media containing casaminoacids, corn steep liquor or peptone. After incubation, the blastospore counts reached 6.38 × 109 blastospores/ml, in the medium containing sucrose and corn steep liquor, which was significantly higher than the obtained with media containing casaminoacids or peptone. The medium containing corn steep liquor produced predominately submerged conidia, meanwhile the other media produced blastospores. The blastospores produced in the medium containing casaminoacids presented faster germination rates, than the blastospores produced in media containing corn steep liquor or peptone, although, after airdrying, were observed significant reductions on the viability of blastospores produced in the media composed by casaminoacids or peptone, but the spores produced in the medium with corn steep liquor were not affected. For storage of blastospores at 4 and 26°C after some months, the blastospores produced in the medium with casaminoacids showed the highest viability at 26°C, whereas at 4°C the counts of viable blastospores produced in medium containing corn steep liquor were significantly higher than the counts of blastospores produced in the other media with casaminoacids or peptone. The blastospores maintained for six months at 4°C showed high mortality against third-instar Plutella xylostella larvae.Key words: Beauveria bassiana, liquid media, fermentation, short times of propagation, biological control, entomopathogen fungus

    Efficient low-loaded ternary Pd-In2O3-Al2O3 catalysts for methanol production

    Get PDF
    Pd-In2O3 catalysts are among the most promising alternatives to Cu-ZnO-Al2O3 for synthesis of CH3OH from CO2. However, the intrinsic activity and stability of In2O3 per unit mass should be increased to reduce the content of this scarcely available element and to enhance the catalyst lifetime. Herein, we propose and demonstrate a strategy for obtaining highly dispersed Pd and In2O3 nanoparticles onto an Al2O3 matrix by a one-step coprecipitation followed by calcination and activation. The activity of this catalyst is comparable with that of a Pd-In2O3 catalyst (0.52 vs 0.55 gMeOH h−1 gcat-1 at 300 °C, 30 bar, 40,800 mL h−1 gcat-1) but the In2O3 loading decreases from 98 to 12 wt% while improving the long-term stability by threefold at 30 bar. In the new Pd-In2O3-Al2O3 system, the intrinsic activity of In2O3 is highly increased both in terms of STY normalized to In specific surface area and In2O3 mass (4.32 vs 0.56 g gMeOH h−1 gIn2O3-1 of a Pd- In2O3 catalyst operating at 300 °C, 30 bar, 40,800 mL h−1 gcat-1).The combination of ex situ and in situ catalyst characterizations during reduction provides insights into the interaction between Pd and In and with the support. The enhanced activity is likely related to the close proximity of Pd and In2O3, wherein the H2 splitting activity of Pd promotes, in combination with CO2 activation over highly dispersed In2O3 particles, facile formation of CH3OH

    Evaluation of a DSGE Model of Energy in the United Kingdom Using Stationary Data

    Get PDF
    I examine the impact of energy price shock (oil prices shock and gas prices shock) on the economic activities in the United Kingdom using a dynamic stochastic general equilibrium model with a New Keynesian Philips Curve. I decomposed the changes in output caused by all of the stationary structural shocks. I found that the fall in output during the financial crisis period is driven by domestic demand shock, energy prices shock and world demand shock. I found the energy prices shock’s contribution to fall in output is temporary. Such that, the UK can borrow against such a temporary fall. This estimated model can create additional input to the policymaker’s choice of models

    Low Sensitivity of BinaxNOW RSV in Infants

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants. Early detection of RSV can optimize clinical management and minimize use of antibiotics. BinaxNOW RSV (BN) is a rapid antigen detection test that is widely used. We aimed to validate the sensitivity of BN in hospitalized and nonhospitalized infants against the gold standard of molecular diagnosis. METHODS: We evaluated the performance of BN in infants with acute respiratory tract infections with different degrees of disease severity. Diagnostic accuracy of BN test results were compared with molecular diagnosis as reference standard. RESULTS: One hundred sixty-two respiratory samples from 148 children from October 2017 to February 2019 were studied. Sixty-six (40.7%) samples tested positive for RSV (30 hospitalizations, 31 medically attended episodes not requiring hospitalization, and 5 nonmedically attended episodes). Five of these samples tested positive with BN, leading to an overall sensitivity of BN of 7.6% (95% confidence interval [CI], 3.3%-16.5%) and a specificity of 100% (95% CI, 96.2%-100%). Sensitivity was low in all subgroups. CONCLUSIONS: We found a low sensitivity of BN for point-of-care detection of RSV infection. BinaxNOW RSV should be used and interpreted with caution

    The contexts and early Acheulean archaeology of the EF-HR paleo-landscape (Olduvai Gorge, Tanzania)

    Get PDF
    Renewed fieldwork at the early Acheulean site of EF-HR (Olduvai Gorge, Tanzania) has included detailed stratigraphic studies of the sequence, extended excavations in the main site, and has placed eleven additional trenches within an area of nearly 1 km(2), to sample the same stratigraphic interval as in the main trench across the broader paleo-landscape. Our new stratigraphic work suggests that EF-HR is positioned higher in the Bed II sequence than previously proposed, which has implications for the age of the site and its stratigraphic correlation to other Olduvai Middle Bed II sites. Geological research shows that the main EF-HR site was situated at the deepest part of an incised valley formed through river erosion. Archaeological excavations at the main site and nearby trenches have unearthed a large new assemblage, with more than 3000 fossils and artefacts, including a hundred handaxes in stratigraphic position. In addition, our test-trenching approach has detected conspicuous differences in the density of artefacts across the landscape, with a large cluster of archaeological material in and around the main trench, and less intense human activity at the same level in the more distant satellite trenches. All of these aspects are discussed in this paper in the light of site formation processes, behavioral contexts, and their implications for our understanding of the early Acheulean at Olduvai Gorge

    Ultra-Fast and Optimized Method for the Preparation of Rodent Testicular Cells for Flow Cytometric Analysis

    Get PDF
    Homogeneity of cell populations is a prerequisite for the analysis of biochemical and molecular events during male gamete differentiation. Given the complex organization of the mammalian testicular tissue, various methods have been used to obtain enriched or purified cell populations, including flow cell sorting. Current protocols are usually time-consuming and may imply loss of short-lived RNAs, which is undesirable for expression profiling. We describe an optimized method to speed up the preparation of suitable testicular cell suspensions for cytometric analysis of different spermatogenic stages from rodents. The procedure takes only 15 min including testis dissection, tissue cutting, and processing through the Medimachine System (Becton Dickinson). This method could be a substitute for the more tedious and time-consuming cell preparation techniques currently in use

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GlnR is an atypical response regulator found in actinomycetes that modulates the transcription of genes in response to changes in nitrogen availability. We applied a global <it>in vivo </it>approach to identify the GlnR regulon of <it>Streptomyces venezuelae</it>, which, unlike many actinomycetes, grows in a diffuse manner that is suitable for physiological studies. Conditions were defined that facilitated analysis of GlnR-dependent induction of gene expression in response to rapid nitrogen starvation. Microarray analysis identified global transcriptional differences between <it>glnR</it><sup>+ </sup>and <it>glnR </it>mutant strains under varying nitrogen conditions. To differentiate between direct and indirect regulatory effects of GlnR, chromatin immuno-precipitation (ChIP) using antibodies specific to a FLAG-tagged GlnR protein, coupled with microarray analysis (ChIP-chip), was used to identify GlnR binding sites throughout the <it>S. venezuelae </it>genome.</p> <p>Results</p> <p>GlnR bound to its target sites in both transcriptionally active and apparently inactive forms. Thirty-six GlnR binding sites were identified by ChIP-chip analysis allowing derivation of a consensus GlnR-binding site for <it>S. venezuelae</it>. GlnR-binding regions were associated with genes involved in primary nitrogen metabolism, secondary metabolism, the synthesis of catabolic enzymes and a number of transport-related functions.</p> <p>Conclusions</p> <p>The GlnR regulon of <it>S. venezuelae </it>is extensive and impacts on many facets of the organism's biology. GlnR can apparently bind to its target sites in both transcriptionally active and inactive forms.</p
    corecore